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An Algorithm for Incremental Timing Analysis
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Abstract- In recent years, many new algorithms have been
proposed for performing a complete timing analysis of sequential
logic circuits. In this paper, we present an incremental timing
analysis algorithm. When an incremental design change is made
on the logic network, this algorithm will identify the portion of de-
sign for which the timing is affected, and quickly derive the new
arrival times and slacks. A fast incremental timing analysis is de-
sirable for users doing interactive logic design. It is particularly
important for a logic synthesis program, which needs to evaluate the
circuit delays under many logic modifications.

1. Introduction
Designs using level-sensitive latches have become fairly pop-

ular lately. A significant advantage of such a design style is that the
cycle stealing across the latches is allowed and the clock cycle time
can be made smaller than the longest combinational logic delay.
A general formulation of timing constraints for both edge-triggered
flip-flops and level-sensitive latches was presented by Sakallah,
Mudge, and Olukotun in [1]. These timing constraints are used for
a pattern-independent timing analysis of logic circuits [1].
Szymanski and Shenoy in [2] developed a timing verification algo-
rithm through an elegant analysis of timing constraints. There are
several other algorithms [3-4] for the pattern-independent timing
analysis in the literature. All these algorithms are based on the latch
graph and have been used for performing the timing analysis of
complete logic designs.

A sequential logic circuit consists of a combinational logic
network, a set of memory elements (level-sensitive latches or flip-
flops) and a set of primary inputs (PIs) and outputs (POs). The
timing constraint set, G, for such a circuit may be abstracted into
the form of a latch graph, L. A node on the latch graph represents
a PI, a PO, or a memory element, while an edge represents the
longest and shortest combinational delay. Each memory element is
controlled by a clock waveform, which is characterized by a clock
cycle time, , a setup time, Si, a hold time, Hi, a clock opening time
Bi, and a clock closing time Fi. An example of a sequential circuit
and the corresponding latch graph is shown in Fig. 1. The latch
graph is extracted by running the longest and shortest path algorithm
through combinational logic N times, each with one memory ele-
ment or a PI as the source node. The complexity of the latch graph
extraction is O(N × G ), which, for a large circuit, usually takes

more CPU time than that of timing analysis itself, O(m × L ),
where m, the number of iterations, is typically much less than N.
Therefore, as a first step for achieving fast timing analysis, we need
to avoid the expensive overhead of the latch graph extraction.
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Figure 1. A simple example. (a)A sequential logic circuit. (b)The latch
graph. (c)The timing constraint graph.

A direct approach was proposed in [5] to apply timing analysis
on the full timing constraint graph G = (V,E), which is defined as
follows: Each node Vi in G represents either a PI, a PO or a pin
on the logic gate, while each edge (Vi, Vj) represents the delay Λi,j

between a pair of pins. In G, a global source node V0 is added to
represent the time origin, and an edge is inserted from V0 to each
PI node with user-asserted late arrival time as edge weight. This
way, all the signal paths originated from PIs may be extended to the
common source node. To account for the signal paths originated
from memory elements, an edge is also inserted from V0 to the
output pin of each memory element with clock opening-edge arrival
time Bi as edge weight. See Fig. 1(c). It was shown in [5] that the
late-mode worst-case arrival time Ai at node Vi is equal to the longest
path length from V0 to Vi in G. Therefore, the longest path algo-
rithms, such as the Bellman-Ford method, may be used to solve the
late-mode timing problem, [5, 6]. In the general case where G may
contain some feedback loops, the longest path algorithm takes a
number of iterations to converge with a complexity O(m × G ),
where m, the number of iterations is bounded by N and typically less
than 10. For a chip with 50,000 gates, the longest path algorithm
on the full timing constraint graph typically takes about one minute
of CPU time on a 50 MIP machine, while the latch graph based
algorithm may take up to 10 times of CPU time. When we apply
these two approaches to the incremental design environment as
shown in Fig. 2(a) and 2(b), the difference becomes even wider.
Suppose that n design modifications are successively tried. The
difference in CPU times between two methods would be n times
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bigger. Since the latch graph must be regenerated for each incre-
mental logic change, and it is difficult to improve the extraction
time of the latch graph incrementally, we elect to develop our in-
cremental timing analysis algorithm by modifying the direct ap-
proach. See Fig. 2(c).
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Figure 2. Timing analysis methods for incremental changes. (a)Timing
analysis based on latch graph. (b)Timing analysis based on full timing
graph. (c)Incremental timing analysis.

The full timing constraint graph is also an ideal medium for
capturing the incremental changes made at gate levels. The logic
design is often modified either manually or with an optimization
program to meet some delay or power requirements, using tech-
niques such as power-up, power-down, re-placement, re-route, or
re-synthesis. Let G′ be the timing constraint graph after some
modifications are made on edge weights. Let Λi,j and Λ′ i,j be re-
spectively the delay weight of edge (Vi, Vj) in G and G′. The dif-
ference between two graphs is captured by those edges with weights
changed: G′ − G = { (Vi, Vj) 

 
Λ′ i,j ≠ Λi,j}. To simplify discussions, let

us include in G and G′ some edges with weight − ∞ to represent
non-existing edges. This enables one to use an identical set of edges
for G and G′, and to consider the deletion and insertion of edges
as special cases of weight changes: The deletion of an edge is
modelled as a change of edge weight from Λi,j to − ∞, while the
insertion of an edge is modelled as a change of edge weight from
− ∞ to Λ′ i,j. For an incremental change in the logic design involving
a small number of edges, it is very desirable to have a fast method
to find out the corresponding changes in timing. Since the compu-
tation time of the longest path algorithm on G′ is proportional to
 
 
G′ 

 
, it may take more than 1 hour CPU time for a large VLSI chip

with millions of transistors. This is too costly for chip designs
which need frequent incremental modifications. In this paper, we
propose an incremental longest path algorithm which is very effi-
cient, since it generally retains and utilizes the timing information
as much as possible to minimize the amount of computation.

Let us briefly review the single-source longest path problem
[5-7]. Given a node Vi, there may be many paths from V0 to this
node. For each such path p, the path length L(p) is defined as the
sum of edge weights along p. The longest path length Ai is
max

p
{ L(p)}, where the maximum is taken over the set of all paths

from V0 to Vi. It may be shown that if G does not contain any
positive loop, the set of longest path lengths {Ai} exists for all

nodes, and it is the minimum solution which satisfies all the con-
straints {Ai − Aj ≥ Λi,j 

 
(Vi, Vj) ∈  G}. In many longest path algorithms

[5, 6], a dominance graph T = { (ti, Vi)} is also built, where ti is the
dominant predecessor of Vi which updates Ai in the path searching
process. If G does not contain any positive loop, T is the longest
path tree. If G contains positive loops, T will also contain some
loops, all of which have positive gains. Note that the inclusion of
non-existing edges, i.e. edges with weight − ∞, does not change the
longest path lengths in G.

2. The incremental longest path problem
Problem: Given the longest path solution {Ai} to G and the incre-
mental change G′ − G, find the new longest path lengths {A′ i} in
G′.

The edges in G′ − G may be classified into two kinds:

1. Edges with positive changes: Edge weights in G are increased.
This may happen, when some circuit in the design is replaced
by a lower power version. An insertion of a new edge can
be modelled as an increase of edge weight from − ∞ to the new
delay value.

2. Edges with negative changes: Edge weights in G are de-
creased. This may happen, when some circuit in the design is
replaced by a higher power version. A deletion of an edge can
be modelled as a decrease of edge weight from its previous
value to − ∞.

Let E(+) and E(−) represent respectively the sets of edges with positive
and negative changes:G′ − G = E(+) E(−).

Definition 1: Let ei,j = (Vi, Vj) be an edge in the setG′ − G, and
C(ei,j) be the set of nodes inside the fan-out cone from node Vj. Then
the fan-out cone from the set of modified edges is defined as the
union: C = {C(e) e ∈ G′ − G}. For an example, see Fig. 3.

Definition 2: The cone of change CC is defined as the set of those
nodes in which the new arrival time is different from the old one:
CC = {Vi 

 
Ai ≠ A′ i}.

Lemma 1

Ai = A′ i for nodesVi ∈/ C. That is,CC is a subset ofC.

Proof: There can not be any path from ei,j to those nodes in
V − C(ei,j) by the definition of a fan-out cone. Therefore, the signal
arrival times at these nodes will not be affected by the change of
weight on ei,j. When there are two or more edges modified, Ai may
change only for those nodes in the union of fan-out cones, C.
 Q.E.D.

Since  
 
C 

 
is less than  

 
V 

 
, the computation time can be saved

by restricting the application of the longest path algorithm to C,
instead of the full graph G′. This leads to the following simple in-
cremental longest path algorithm:

Algorithm ILP1(G, G′)
1. Apply a depth-first search from edges in G′ − G to generate

the fan-out cone, C.

2. For each node Vi in C,

a. If all the predecessors of Vi are inside the cone C, ini-
tialize Ai to − ∞.

b. Otherwise, initialize Ai to max
j

{ Aj + Λj,i Vj∈/ C}
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3. Apply the longest path algorithm on the nodes inside C.

Lemma 2 (Monotonicity)

Let Ai and A′ i represent respectively the longest path lengths from
V0 to Vi in G and G′.

1. If Λi,j ≤ Λ′ i,j for every edge, then Ai ≤ A′ i.

2. If Λi,j ≥ Λ′ i,j for every edge, then Ai ≥ A′ i.

Proof: Let L(p) and L′(p) be the path lengths of p in G and
G′ respectively. For the first case, L(p) ≤ L′(p) for every path p, and
hence Ai ≤ A′ i. The second case can be proved in the similar way.
 Q.E.D.

3. A new incremental longest path method
According to Lemma 1, CC is a subset of C. Some nodes in-

side the cone C may be dominated by the signal arrival times at
nodes outside C and therefore may not be affected by the change
in G′ − G, such as nodeV14 in Fig. 3. This motivates us to construct
new algorithms by restricting the path search within CC in order to
further cut down the computation complexity.
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Figure 3 : Numbers associated with edges are weights, while numbers as-
sociated with nodes are longest path lengths (labels). The change in edge
weights and node labels are shown as two numbers separated by / .

3.1. The case with positive changes only.

This is the case withE(+) ≠ NULL, and E(−) = NULL. In such
a situation, Λ′ i,j > Λi,j on edges of E(+), and thus according to Lemma
2, Ai will be a lower bound for A′ i. Therefore, when searching for
new longest paths in G′, we may ignore those paths which have path
lengths less than or equal to Ai. Edges ei,j = (Vi, Vj) in E(+) can be
divided into two cases:

1. CaseAi + Λ′i,j ≤ Aj: The new constraintΛ′ i,j on ei,j is satisfied.

2. CaseAi + Λ′i,j > Aj: The new constraintΛ′ i,j on ei,j is violated.
Such edges will be used to drive the search for new longest
paths inside CC and will be called driving edges.

Since weight changes on edges belonging to Case 1 will not
affect Ai, these edges may be dropped from the set E(+). A queue
Q(0), constructed from the fan-in nodes of remaining driving edges,
will then be used to guide a dynamic breadth-first search in CC for

new arrival times. In order to make a breadth-first traversal on a
graph which may contain loops, we need to create directions for
edges encountered. This is done by assigning a breadth-first search
number, bfs(Vj), to each node Vj according to the order in which it
is added to the queue. Forward-directed edges are edges (Vi, Vj)
with bfs(Vi) < bfs(Vj), while backward-directed edges are edges
(Vi, Vj) with bfs(Vi) > bfs(Vj). It is clear that forward-directed edges
form a directed acyclic graph. The breadth-first traversal is per-
formed on the forward-directed edges to update Ai. When a
backward-directed edge is encountered, its fan-in node may be
added to the output queue Q(1). When the forward traversal is
completed, the breadth-first traversal in the reverse direction is
started with Q(1). This process takes a few number (typically less
than 10) of iterations to converge, if G′ does not contain positive
loops. If loops appear on the dominance graph T, then they all must
have positive gains, and need to be reported as timing violations.

Algorithm DrivePositive(E(+))

1. Set the iteration counter m=0.. Generate the queue
Q(0) = {Vi 

 
ei,j = (Vi, Vj) ∈  E(+) and ei,j is a driving edge},

2. Repeat the following:

a. For each node Vi in queue Q(m), set bfs(Vi) respectively to
from 1 to Q(m) .

b. Set the output queue Q(m + 1) to NULL.

c. Pop the top node Vi out of Q(m). For each fan-out edge (
V i, V j), do

1) Casebfs(Vi) < bfs(Vj): if Ai + Λ′i,j > Aj, then

a) SetAj to Ai + Λ′i,j, and the dominance prede-
cessor pointer tj to Vi.

b) If Vj is not in queue Q(m), add Vi to the bottom
of Q(m). Increase Q(m)  by 1 and set bfs(Vj) to
 
 
Q(m) 

 
.

2) Casebfs(Vi) > bfs(Vj): if Vi is not in Q(m + 1), addVi

to the top of Q(m + 1).

d. If m ≥ 10, search loops in the dominance graphT. If
loops are found, report positive loops, and exit.

e. Increase m by 1.

3. Stop when Q(m) is empty.

We shall illustrate the above algorithm with the example in
Fig. 3. This graph contains a loop V9V13V10V9. There are two edges
in E(+): the weight on edge (V3, V6) is increased from 1 to 6, and the
weight on edge (V9, V12) is increased from 2 to 3. Since the old
longest path lengths to V3, V6, V9, and V12 are respectively 0, 4, 6,
and 9, constraint 6 on edge (V3, V6) is violated, while constraint 3
on edge (V9, V12) is satisfied. So Q(0) is set to {V3}. In the first
breadth-first search, we traverse nodes V6, V9, V12 and V13, and update
their labels Ai respectively to 6, 7, 10, and 9. Since a backward-
directed edge (V13, V10) is encountered, Q(1) is set to {V13}. This leads
to A10 =14 during the second iteration, and Q(2) is set to {V10}.
During the third iteration, we traverse nodes V16 and V20, and update
their labels to 15 and 16. Now the algorithm converges, since Q(3)

becomes empty. So CC = { V6, V9, V10, V12, V13, V16, V20}, and CC  =
7 is less than C  = 12.

3.2. The case with negative changes only.

This is the case withE(−) ≠ NULL, and E(+) = NULL. Here
we would like to utilize the dominance graph T to speed up the
search of the new longest path length A′ i.
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Definition 3: Let ei,j = (Vi, Vj) be an edge inE(−)  T, andCD(ei,j) be
the dominance fan-out cone consisting of nodes to each of which
there is a directed path in T from ei,j. Then the dominance fan-out
cone from E(−) is defined as the union: CD =

 {CD(e) 
 
e ∈  E(−)  T}. For an example, see Fig. 4.

Lemma 3

For the case E(+) = NULL, we have Ai = A′ i for nodes Vi ∈/ CD. In
other words, CC is a subset of CD.

Proof: Since Λ′ i,j < Λi,j, Ai becomes an upper bound to A′ i ac-
cording to Lemma 2. Let the longest path from V0 to Vi in G be
pi, i.e., Ai = L(pi). If Vi ∈/ CD, then pi does not encounter any edge
from E(−), and Ai, being the path length of pi in G′, is also a lower
bound to A′ i. Q.E.D.
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-3
Dominance fan-out cone

Figure 4. The edges modified are labelled with the weight changes.T is
shown by edges in solid lines, while CD is covered by edges in heavy solid
lines. e2 is not on T, and will not affect the timing.

Thus we need only to concentrate our efforts in finding the
new longest path leading to nodes in CD. In the following dis-
cussion, we shall use pi to represent the old longest path from V0 to
Vi in G. For a node Vi ∈ CD, Ai = L(pi) is no longer the path length
of pi in G′, because pi must encounter edges from E(−). For example,
in Fig. 4, the path lengths to nodes in CD(e1) − CD(e4) are reduced
by 5, while the path lengths to nodes in CD(e4) are reduced by 5+3.

V
i

(a) (b)

Figure 5. Dotted, solid, and dashed lines represent respectively side, tree,
and cross edges. (a)Fan-in edges of node Vi. (b)Loops formed from cross
and tree edges.

To calculate the new longest path length to a node Vi ∈ CD,
we observe that the last edge on such a path must be a fan-in edge
of Vi. The fan-in edges of Vi fall into the following three types as
illustrated in Fig. 5(a):

1. Side edges (Vj∈/ CD): The fan-in nodes of these edges are out-
side the cone CD.

2. Tree edges (Vj ∈ CD and (Vj, Vi) ∈ T): These edges are on the
dominance tree T.

3. Cross edges (Vj ∈ CD and (Vj, Vi)∈/ T): These are edges between
nodes inside the cone CD, but not part of T.

For a side edge (Vj, Vi), Aj = A′ j = L(pj) according to Lemma 3,
and Aj + Λj,i is the length for the path consisting ofpj and edge
(Vj, Vi). For a tree edge (Vj, Vi), the path length of pi in G′ is the sum
of weights along pi, which may be evaluated by a breadth-first
traversal of nodes in CD along edges in T. For a cross edge
(Vj, Vi), a path length to Vi from this edge can not be directly derived
from Aj, since Aj may not be equal to any path length in G′. For the
moment, let us ignore cross edges, and define A′′ i as the maximum
of new path lengths among paths leading to node Vi through side
and tree edges. Then for nodes inside CD, A′′ i, being the length of
a path in G′, is a lower bound of A′ i.

If pi contains several edges from E(−) T, then the path length
of pi will be affected by the weight changes on all these edges, for
example, the fan-out node of e4 in Fig. 4. To facilitate a systemat-
ical calculation of new path lengths A′′ i, a breadth-first ordering of
edges in E(−) T is established first. That is, if there is a directed
path in T from edge ei,j to edge ek,l, then edge ei,j is placed before
edge el,k. CD and the ordering are constructed in Step 1 of Algorithm
DriveNegative.

To calculate {A′′ i}, we take edges from E(−) T according to
the sort order, and make a breadth-first traversal of their descendent
nodes along T. For each node encountered, its fan-in edges are
examined. The path lengths resulting from side and tree edges are
calculated, and A′′ i is set to the maximum of these lengths in Step
2 of Algorithm DriveNegative.

Another reason for dropping cross edges during the derivation
of {A′′ i} is that these cross edges may form loops with tree edges,
see Fig. 5(b), and the breadth-first traversal method will break down
on these loops. Now, after obtaining A′′ i, we need to check these
cross edges (Vj, Vi) to see whether the corresponding constraint,
A′′ j + Λ′j,i ≤ A′′ i are violated, and collect those edges with violated
constraints into a set E(v). If E(v) is empty, then {A′′ i} is indeed the
longest path length set in G′. If E(v) is not empty, then define a new
graph G′′  as follows:

Λ′′ j,i = { − ∞
Λ′ j,i

for edges(Vj, Vi) ∈  E(v)

for edges(Vj, Vi) ∈/ E(v) }
Then clearly constraints on all edges of G′′  are satisfied, and
{ A′′ i} is the longest path length set in G′′ . The derivation of E(v) is
done in Steps 3-4 of Algorithm DriveNegative.

Since Λ′′ i,j ≤ Λ′ i,j, E(v) is a set of positive driving edges and
Algorithm DrivePositive may be used to complete the derivation
of {A′ i}, the longest path length set in G′. Note that this
DrivePositive will only change Ai for nodes inside CD.

Algorithm DriveNegative(E(−), E(v))
1. For each node Vj in {Vj (Vi, Vj) ∈ E(−) T}, do

a. Create a queue Q = { Vj}, and mark Vj as cone-member
of CD.

b. While Q is not empty, do
1) Pop the top node Vl out of Q.
2) For each edge el,k = (Vl, Vk) in T, do



www.manaraa.com

 

a) If (Vl, Vk) ∈  E(−)  T, placeel,k after ei,j in the
sort order.

b) Else if Vk is not marked as cone-member, do
so and add Vk to the bottom of Q.

2. For each edge (Vi, Vj) in E(−) T do,
If Vj is not marked as visited, then

a. Create a queue Q = { Vj}.
b. While Q is not empty, do

1) Pop the top node Vl out of Q, and mark it as visited.
2) Find the dominance predecessor, tl = Vk0, and set

A′′  to Ak0 + Λk0,l.
3) For each side edge {ek,l = (Vk, Vl) Vk∈/ CD} do,

If Ak + Λk,l > A′′ , setA′′ to Ak + Λk,l, andtl to Ak.
4) If A′′ = Al, then continue.
5) Set Al to A′′ .
6) For each fan-out edge {(Vl, Vm) ∈ T}, if Vm is not

marked as visited, add Vm to Q.
3. Set E(v) = NULL.
4. For each node Vi ∈ CD, do

For each fan-out edge, ei,j = (Vi, Vj), do
If Vj ∈  CD, tj ≠ Vj, andAj − Ai < Λ′i,j, then addei,j to E(v).

It can be shown that the computation complexity of Algorithm
DriveNegative is O( CD ). We shall illustrate the algorithm with
the example in Fig. 3. Let us reverse the changes: the weight on
edge (V3, V6) is decreased from 6 to 1, and the weight on edge
(V9, V12) is decreased from 3 to 2. These are two edges in E(−). The
edges in solid lines show the longest path tree T as it fans out from
E(−). Clearly E(−)  T = E(−). During Step 1 of the algorithm, the
cone members of CD are derived as those nodes circled by solid
lines, and the sorting on E(−) is done with edge (V3, V6) followed by
edge (V9, V12). During Step 2 of the algorithm, we traverse through
nodes in cone CD, and use side edges(dotted lines) and tree
edges(solid lines) to update node labels. The labels on V6, V9, V10,
V12, V13 V16, and V20 are changed back respectively to 4, 6, 13, 9, 8,
14, and 15. During Step 3-4 of the algorithm, cross edges(dashed
lines) are checked, and no driving edge is found. So E(v) = NULL,
and we have derived the solution.

3.3. The general case

This is the case withE(+) ≠ NULL, and E(−) ≠ NULL. For this
general case, Lemma 3 is revised in the following form:

Lemma 4

Let CD be the dominance fan-out cone from E(−) T. Then we have
Ai ≤ A′ i for nodesVi ∈/ CD.

Proof: For those nodes Vi outside the CD of E(−), the longest
path pi leading to node Vi in G does not encounter any edge from
E(−). Hence Ai, being the path length of pi in G, can not be greater
than the new path length of pi in G′, and is a lower bound for A′ i,
the longest path length in G′. Q.E.D.

However, for those nodes Vi inside CD, Ai may not be a lower
bound for A′ i. Algorithm DriveNegative may be used to generate
lower bounds for these nodes, and a set of driving edges, E(v). Then
merge edges from E(v) with those from E(+), and use Algorithm
DrivePositive to derive {A′ i}. If no loop is found in T, then we
reach our final solution A′ i. On the other hand, if loops are found
in T, then they must all be loops with positive gains which will be

reported as timing violations. In such cases, in order to find
meaningful arrival times and slacks, we need to modify the graph
G′ to remove these loop violations. This may be accomplished by
either deleting an edge on the loop, or decreasing the weight of one
edge such that the loop gain becomes non-positive. For example, a
latch on the loop can be set in the test mode with the corresponding
edge for the internal delay removed. The edges deleted or the edges
with weights reduced then contribute to E(−), the set of edges with
negative change in the modified graph. We need to make another
round of iteration to find the timing for the modified graph. This
process may be continued until all positive loops are broken.

Algorithm ILP2(E(+), E(−))
 Repeat

1. DriveNegative(E(−), E(v)).

2. Set E(−)=NULL, and merge E(+) and E(v) into E(+) E(v).

3. DrivePositive(E(+)@  E(v)).

4. For each loop found in T, break an edge, and collect the edge
into a new set E(−).

 Until E(−) is empty.

4. Results and Discussion
We have implemented these algorithms into CYCLOPSS [5],

and run them through ISCAS'89 benchmark circuits and one mod-
erately large industrial chip example. The chip example contains
50,000 gates, and has a cycle time of = 7.0 ns. For the ISCAS'89
circuits, we adopted the transformed version [6] in which a com-
plementary two-phase clocking scheme is employed to control
level-sensitive latches. For the cycle time, we use  = 1.2 min,
where min is the minimum cycle time for the circuit. Our exper-
iments start with a full timing analysis using both the latch-graph(
L) based algorithm, and the full-graph(G) longest path algorithm.
Each analysis consists of two runs, a forward run through the timing
constraint graph (L or G) to derive the arrival time, Ai, and a back-
ward run through the graph to derive the required arrival time, Ri.
The slack is calculated as Ri − Ai. The characteristic values and CPU
times on a 40 MIP machine for seven ISCAS'89 circuits and the
chip example are listed in Table 1.

Each circuit is then subject to about 60 consecutive incre-
mental changes, among which, half contain negative change in edge
weights, and the other half contain positive change in edge weights.
Each incremental change involves the weight modification of all the
fan-out edges from a randomly selected set of nodes. (The size, K,
of this node set ranges from 1, 10, 100, 1,000, 10,000, to 100,000
nodes.) If the node picked for the incremental change is the source
pin of a net, this corresponds to a change of the source-to-sink delay
of the net. If the node picked is the input pin of a gate, this corre-
sponds to a change of internal gate delay of the pin. In both cases,
the weight change is selected with a random number generator
which has a mean value 0 and a variance 0.2 . After each change,
both ILP1 and ILP2 are used to incrementally update arrival times
and slacks. Fig. 6 shows the plot of the CPU times of the two al-
gorithms versus K using the logarithmic scales in both axes for the
circuit, s35932. In this plot, points marked with '.' and 'o' are re-
spectively the CPU times of ILP1 for positive and negative weight
changes, while points marked with '+' and 'x' are respectively the
CPU times of ILP2 for positive and negative weight changes. More
experimental data for the CPU running times of Algorithm ILP1 and
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ILP2 are respectively presented in Table 2 and Table 3. Each entry
in these tables shows the average CPU times of incremental timing
runs for a sample of 10 different circuit modifications.

circuit
name
s27

s1423 
s5378 
s9234
s13207
s35932
s38584

chip

gate
count

26
1462
5916
11650
17240
35586
41410
50236

latch
count

6
148
358
456
1338
3456
2904
13131

cycle

min
8
80

32.7
76
92
54
70
−

cycle

9.6
96.0
39.2
91.2
110.4
64.8
84.0
7.0

node
count

78
3982
14866
28130
41212
96290
110406
249267

edge
count

86
4962
17662
32840
47578
120628
137388
318202

T1
sec
0.02
6.3
8.4
23.6
29.4
41.4
85.4
721.5

T2
sec
0.00
1.21
3.24
7.64
12.87
24.04
34.16
74.96

Table 1: Characteristic values, and CPU times for full timing analysis.
Column T1 is from a latch-graph based algorithm. Column T2 is from a
full-graph longest path algorithm.

Algorithm ILP1 runs only moderately faster than the full tim-
ing algorithm with a speed-up ranging from a few percent to a factor
of 5, See Table 2. Therefore, ILP1, based on the concept of the
simple fan-out cone, is not a very powerful algorithm. On the other
hands, Algorithm ILP2 runs significantly faster than ILP1. For both
circuit s35932 and the chip example, the ratios of CPU times for a
full timing analysis (T2) to that of ILP2 are about 10,000 times for
K=1, 1,000 times for K=10, 100 times for K=100, 10 times for
K=1,000, and a few times for K=10,000. From Table 3, we noticed
that for small incremental changes involving K ≤ 10 nodes, the CPU
times of ILP2, being in the order of hundredth of seconds, seem less
sensitive to the sizes of the circuits. This corresponds to a speed-up
of more than three orders of magnitude relative to the full timing
analysis algorithm for large circuits. Even for incremental changes
involving as large as K=100 to 1,000 nodes, the speed-up relative
to the full timing analysis algorithm is still as high as 10 to 100.
Therefore, Algorithm ILP2 can be used effectively under the inter-
active environment, in which designers need to make frequent de-
sign changes and quickly find the timing change. The dramatic
speed of Algorithm ILP2 also makes it an ideal timing tool for
coupling to a logic synthesis program, since, with such a fast in-
cremental timer, the synthesis program can afford to evaluate a tre-
mendous number of circuit modifications before converging to the
final circuit implementation.

We would like to point out that our algorithms may also be
used to solve the incremental shortest path problem. This can be
achieved by making the following transformations in graphs G and
G′: Λi,j → − Λi,j, Λ′ i,j → − Λ′i,j, Ai → − Ai, and A′ i → − A′ i. The
shortest path problem corresponds to the early-mode timing problem
under the conservative constraints [1,2]
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Figure 6. CPU times of incremental algorithms for s35932.

circuit
name
s27

s1423 
s5378 
s9234
s13207
s35932
s38584

chip

K = 1
sec

0.002
0.112
0.891
1.875
3.821
11.418
22.976
12.759

K = 10
sec

0.000
0.195
1.160
5.333
7.412
12.217
26.251
21.547

K = 102

sec
−

0.208
1.493
6.608
10.067
19.562
29.098
23.072

K = 103

sec
−

0.205
1.559
6.903
11.582
19.954
29.093
27.159

K = 104

sec
−
−

1.789
7.526
12.005
19.860
29.683
34.803

K = 105

sec
−
−
−
−
−

11.52
24.48
48.30

T2
sec
0.00
1.21
3.24
7.64
12.87
24.04
34.16
74.96

Table 2: Average CPU times for running Algorithm ILP1.

circuit
name
s27

s1423 
s5378 
s9234
s13207
s35932
s38584

chip

K = 1
sec

0.001
0.001
0.002
0.005
0.008
0.003
0.003
0.001

K = 10
sec

0.000
0.002
0.022
0.094
0.031
0.066
0.020
0.028

K = 102

sec
−

0.073
0.174
0.540
0.277
0.330
0.388
0.308

K = 103

sec
−

0.279
1.028
3.219
2.568
3.283
2.201
2.798

K = 104

sec
−
−

2.205
6.829
6.872
11.14
10.97
14.61

K = 105

sec
−
−
−
−
−

26.41
28.45
42.88

T2
sec
0.00
1.21
3.24
7.64
12.87
24.04
34.16
74.96

Table 3: Average CPU times for running Algorithm ILP2.
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