An Algorithm for Incremental Timing Analysis
Jin-fuw Lee, and Donald T. Tang

IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598

Abstract In recent years, many new algorithms have beemore CPU time than that of timing analysis itself,mO(|L|),
proposed for performing a complete timing analysis of sequentiaherem, the number of iterations, is typically much less tivan
logic circuits. In this paper, we present an incremental timingherefore, as a first step for achieving fast timing analysis, we need
analysis algorithm. When an incremental design change is mameavoid the expensive overhead of the latch graph extraction.
on the logic network, this algorithm will identify the portion of de-
sign for which the timing is affected, and quickly derive the new g,
arrival times and slacks. A fast incremental timing analysis is de-
sirable for users doing interactive logic design. It is particularly
important for a logic synthesis program, which needs to evaluate the
circuit delays under many logic modifications.

1. Introduction (@) (b)

Designs using level-sensitive latches have become fairly pop-
ular lately. A significant advantage of such a design style is that the
cycle stealing across the latches is allowed and the clock cycle time
can be made smaller than the longest combinational logic delay.v0 °
A general formulation of timing constraints for both edge-triggered
flip-flops and level-sensitive latches was presented by Sakallah,
Mudge, and Olukotun in [1]. These timing constraints are used féigure 1. A simple example. (a)A sequential logic circuit. (b)The latch
a pattern-independent timing analysis of logic circuits [1]9raph. (c)The timing constraint graph.
$zymanski and Shenoy in [2] de_velopgd_ a timing V(_erification algo- A direct approach was proposed in [5] to apply timing analysis
rithm through an elggant analysis of timing constraints. There 35 the full timing constraint graps = (V,E), which is defined as
severa_l cher glgorlthms [3-4] for the _pattern-lndependent timing|jows: Each nodeV in G represents either a PI, a PO or a pin
analysis in the literature. All these algorlthms are t_;aged on the _Ia{g,lp the logic gate, while each ed@é, V) represents the delay,;
graph and h_ave b_een used for performing the timing analysis Qfiveen a pair of pins. 16, a global source nodé is added to
complete logic designs. represent the time origin, and an edge is inserted ¥eto each

A Sequentia| |ogic circuit consists of a combinational |og|(P| node with user-asserted late arrival time as edge Weight. This
network, a set of memory elements (level-sensitive latches or flipiay, all the signal paths originated from Pls may be extended to the
flops) and a set of primary inputs (Pls) and outputs (POs). Tl§@mmon source node. To account for the signal paths originated
timing constraint set, for such a circuit may be abstracted intofom memory elements, an edge is also inserted fignto the
the form of alatch graph L. A node on the latch graph represent$utput pin of each memory element with clock opening-edge arrival
a PI, a PO, or a memory element, while an edge represents fifiee B as edge weight. See Fig. 1(c). It was shown in [5] that the
longest and shortest combinational delay. Each memory elementate-mode worst-case arrival tirkeat nodeV; is equal to the longest
controlled by a clock waveform, which is characterized by a clodkath length from\; to Vi in G. Therefore, the longest path algo-
cycle time, , a setup tim&, a hold timeH,, a clock opening time fithms, such as the Bellman-Ford method, may be used to solve the
B, and a clock closing timE. An example of a sequential circuit |ate-mode timing problem, [5, 6]. In the general case wiensay
and the corresponding latch graph is shown in Fig. 1. The latéRntain some feedback loops, the longest path algorithm takes a
graph is extracted by running the longest and shortest path algoritAsmber of iterations to converge with a complexitym&(|G|),
through combinational logitN times, each with one memory ele-Wherem, the number of iterations is boundedbyand typically less
ment or a Pl as the source node. The complexity of the latch grapan 10. For a chip with 50,000 gates, the longest path algorithm

extraction is Of x |G|), which, for a large circuit, usually takes on the full timing constraint graph typically takes about one minute
of CPU time on a 50 MIP machine, while the latch graph based

algorithm may take up to 10 times of CPU time. When we apply

32nd ACM/IEEE Design Automation Conference [- - .
Permission to copy without fee all or part of this material is granted, provided these two approaches to the incremental design environment as

that the copies are not made or distributed for direct commercial advantage, shown in Fig. 2(a) and 2(b), the difference becomes even wider.
the ACM copyright notice and thetitle of the publication and its date appear, Suppose than design modifications are successively tried. The

and notice Is giventhat copying is by permission of the Association for p . : .
Computing Machinery. To copy otherwise, or to republish, requiresafee difference in CPU times between two methods wouldhktenes

and/or specific permission. 00 1995 ACM 0-89791-756-1/95/0006 $3.50

www.manaraa.com

bigger. Since the latch graph must be regenerated for each inatedes, and it is the minimum solution which satisfies all the con-
mental logic change, and it is difficult to improve the extractiostraints {& — A= A;|(V, V) O G}. In many longest path algorithms
time of the latch graph incrementally, we elect to develop our iff5, 6], adominance graphT = {(t, i)} is also built, wherg; is the
cremental timing analysis algorithm by modifying the direct apdominant predecessor d which updatesh in the path searching

proach. See Fig. 2(c). process. IfG does not contain any positive loop,is thelongest
path tree If G contains positive loopsl will also contain some
i T g e e — loops, fall_of which h_ave positive gains. Note that the inclusion of
circuit graph 7‘ latchgraph | | onL H modification h non-existing edges, i.e. edges with weight, does not change the
longest path lengths iG.

@ 2. The incremental longest path problem

 read timing analysis ncremental Problem Given the longest path solutiod\] to G and the incre-
circuit graph onG modification mental changes' - G, find the new longest path length&'} in
G.
(b) The edges iIrG' — G may be classified into two kinds:
= PR, T e — 1. Ed_ges with positive changes: Ec!ge _Wt_aightG ialre_incr_eased.
circuit graph onG modification longest path “ This may happen, when some circuit in the design is replaced
by a lower power version. An insertion of a new edge can
© be modelled as an increase of edge weight framto the new
C

delay value.

Figure 2. Timing analysis methods for incremental changes. (a)Timir® Edges with negative changes: Edge weightGirare de-
analysis based on latch graph. (b)Timing analysis based on full timing creased. This may happen, when some circuit in the design is
graph. (c)incremental timing analysis. replaced by a higher power version. A deletion of an edge can

The full timing constraint graph is also an ideal medium for ~ be modelled as a decrease of edge weight from its previous
capturing the incremental changes made at gate levels. The logic Vvalue to—co.
design is often modified either manually or with an optimizatiom_et E® andE® represent respectively the sets of edges with positive
program to meet some delay or power requirements, using tegfim negative changes' - G=E® E©.
nigues such as power-up, power-down, re-placement, re-route, or

re-synthesis. LetG' be the timing constraint graph after somegeﬁnigonhl: LEtfe"'Tj(\/i’.\/").dbemx edge infthe S@(;_VG’Tﬂnd
modifications are made on edge weights. Ngtand A'i; be re- (8,) be the set of nodes inside -out conefrom nodev,. Then

spectively the delay weight of edge,() in G andG'. The dif- the fan-out cone from the set of modified edges is defined as the

ference between two graphs is captured by those edges with weidfﬂ?n: C= {C(e/e0G ~G}. Foran example, see Fig. 3.
changed: G' - G = {(V, V))| \';; # \i)}. To simplify discussions, let Definition 2: The cone of changeC: is defined as the set of those
us include inG and G' some edges with weight o to represent nodes in which the new arrival time is different from the old one:
non-existing edges. This enables one to use an identical set of edges {V,| A # A'}.

for G andG', and to consider thdeletion and insertion of edges

as special cases of weight changes: The deletion of an edgeé.désnma 1

_mode_lled as a change of edge weight framto — e, while _the A = A for nodesV, IC. That is,Cc is a subset ofC.

insertion of an edge is modelled as a change of edge weight from

- to ;. For an incremental change in the logic design involving ~ Proof: There can not be any path fremto those nodes in

a small number of edges, it is very desirable to have a fast methéd C(€;) by the definition of a fan-out cone. Therefore, the signal
to find out the corresponding changes in timing. Since the compaival times at these nodes will not be affected by the change of
tation time of the longest path algorithm @ is proportional to weight one;. When there are two or more edges modifigdnay
|G'|, it may take more than 1 hour CPU time for a large VLSI chipchange only for those nodes in the union of fan-out coges,
with millions of transistors. This is too costly for chip designs Q-E.D.

which need frequent incremental modificatipns. In_this_ paper, we gince|C| is less than V|, the computation time can be saved
propose an incremental longest path algorithm which is very effiy restricting the application of the longest path algorithnCto

cient, since it generally retains and utilizes the timing informatiopstead of the full grapis’. This leads to the following simple in-
as much as possible to minimize the amount of computation. cremental longest path algorithm:

Let us briefly review the single-source longest path problem|gorithm ILP1(G, G)
[5-7]. Given a nodeV, there may be many paths frod to this y — Ap5y 5 depth-first search from edgesGh- G to generate
node. For each such paphthe path length.(p) is defined as the the fan-out coneC.
sum of edge weights along. The longest path lengthy is 2 For each nod¥, in C,
mpax{ L(p)}, where the maximum is taken over the set of all paths a. If all the predecessors df are inside the con€, ini-
from V, to V. It may be shown that iG does not contain any tialize A to — oo. '

positive loop, the set of longest path length#s} {exists for all b. Otherwise, initialized to maxA + A | VZIC}
i il

www.manaraa.com

3. Apply the longest path algorithm on the nodes in€lde new arrival times. In order to make a breadth-first traversal on a
graph which may contain loops, we need to create directions for
Lemma 2 (Monotonicity) edges encountered. This is done by assigning a breadth-first search
Let A and A'; represent respectively the longest path lengths fro&umber,bfs(\/j), to each node accor(_ilng o the order in which it
V, to V. in G andG'. IS added to the queue. Forward-dlrec_ted edges are €dg¥®y
with bfgV)) <bfqV}), while backward-directed edges are edges
1. If Ay <Ny for every edge, theA < A'. (Vi, V) with bfs(V) > bfg(Vj)). It is clear that forward-directed edges
2. If Ay 2N, for every edge, theA = A'. form a directed acyclic gr_aph. The breadth-first traversal is per-
formed on the forward-directed edges to updAte When a
Proof: LetL(p) andL'(p) be the path lengths qgf in G and packward-directed edge is encountered, its fan-in node may be
G' respectively. For the first case(p) < L'(p) for every pattp, and added to the output queu®®. When the forward traversal is
henceA <A'i. The second case can be proved in the similar wayompleted, the breadth-first traversal in the reverse direction is

Q.E.D. started withQ®. This process takes a few number (typically less
than 10) of iterations to converge,& does not contain positive
3. A new incremental longest path method loops. If loops appear on the dominance grapthen they all must

According to Lemma 1Cs is a subset of. Some nodes in- have positive gains, and need to be reported as timing violations.

side the coneC may be dominated by the signal arrival times aflgorithm DrivePositivgéE®)

nodes outsideC and therefore may not be affected by the change set the iteration countem=0.. Generate the queue
in G' - G, such as nod¥,, in Fig. 3. This motivates us to construct QY ={Vile;=(V, V) JE® and e, is a driving edge},

new algorithms by restricting the path search wil@inin order to 2. Repeat the following:

further cut down the computation complexity. a. f,:or eflch ‘nQo(d)‘Ti in queueQ™, setbfy(\V;) respectively to
rom 1 to | Q™.

b. Set the output queu@m*b to NULL.

Pop the top nod¥ out of Q™. For each fan-out edge (
Vi, V), do

1) CasebfgV) <bfgV): if A+ A% >A, then

a) SetA to A+ Ay, and the dominance prede-
cessor pointet to V..

If Vj is not in queu&)™, addV, to the bottom

% Ei))(f‘") Increase| QM| by 1 and sebfgV)) to

2) CasebfqV,) > bfgV)): if Vi is not in Qm+Y, addV,
to the top ofQm+.

d. If m>10, search loops in the dominance graph If
loops are found, report positive loops, and exit.

e. Increasam by 1.
3. Stop wherQ™ is empty.

b)

Figure 3 : Numbers associated with edges are weights, while numbers as- We shall illustrate the above algorithm with the example in
sogiated with nodes are longest path lengths (labels). The change in eptggl 3. This graph contains a lodViVioVe. There are two edges
weights and node labels are shown as two numbers separated by in E®: the weight on edg@Vs, Vi) is increased from 1 to 6, and the
weight on edggVs, Viy) is increased from 2 to 3. Since the old
3.1. The case with positive changes only. longest path lengths td;, Vs, Ve, and Vi, are respectively 0, 4, 6,
This is the case withE® # NULL, and E©® = NULL. In such and 9, constraint 6 on edd¥;, Ve) is violated, while constraint 3
a situation\';; > A\;; on edges oE®, and thus according to Lemma 0n edge(Vs, Vio) is satisfied. SaQ© is set to §#}. In the first
2, A will be a lower bound foR\;. Therefore, when searching for breadth-first search, we traverse noulgs/, Vi andVi; and update
new longest paths i6', we may ignore those paths which have pat#heir labelsA respectively to 6, 7, 10, and 9. Since a backward-
lengths less than or equal &2 Edgese; = (V, V) in E® can be directed edge\s Vi) is encountered)® is set to ¥/.3}. This leads
divided into two cases: to A, =14 during the second iteration, a@P is set to ¥ig.
During the third iteration, we traverse nodgsandV.,, and update
their labels to 15 and 16. Now the algorithm converges, sQfte
2. CaseA + A';>A: The new constrainf\';; on g, is violated. becomes empty. SGc ={V;, Ve, Vio, Viz, Viz, Vig, Vao}, and [Ce| =
Such edges will be used to drive the search for new longékis less thar|C| = 12.
paths insideC. and will be calleddriving edges.

1. CaseA + N\ < A: The new constraind\';; on g; is satisfied.

Since weight changes on edges belonging to Case 1 will g 1he case with negative changes only.
affect A, these edges may be dropped from theEset A queue This is the case withE® # NULL, and E® = NULL. Here
Q©, constructed from the fan-in nodes of remaining driving edgesie would like to utilize the dominance graphto speed up the
will then be used to guide dynamic breadth-first searclin C; for search of the new longest path length

www.manaraa.com

Definition 3: Leteg; = (V,, V) be an edge ilE® T, andCy(g;) be 2. Tree edgeqV,;OGC, and(V, V) OT): These edges are on the
the dominance fan-out coneconsisting of nodes to each of which dominance tred.

there is a directed path ih from e;. Then the dominance fan-out 3. Cross edge$v. [G, and(V, V)IIT): These are edges between
cone from EO is defined as the wunion: G = Tt Col the cord, but not p.art off

{Co(e)| eDE® T}. For an example, see Fig. 4.

For a side edgeV, Vi), A = A, =L(p) according to Lemma 3,
and A + /\; is the length for the path consisting of and edge
(V;, V). For a tree edge/, V), the path length gf in G’ is the sum
For the cas&® = NULL, we haveA = A for nodesV; ICo. In of weights alongp, which may be evaluated by a breadth-first
other wordsCc is a subset oCo. traversal of nodes irC, along edges ifl. For a cross edge

Proof: Sincel'; <Ay, A becomes an upper boundAb ac- (V- Vi), @ path length t¥; from this edge can not be directly derived
cording to Lemma 2. Let the longest path frénto V; in G be from A, sinceA may not be equal to any path lengtiGh For the
p, i.e, A =L(p). If Vi ICy, thenp does not encounter any edgemoment, let us ignore cross edges, and deflheas the maximum

from E©, andA, being the path length gf in G/, is also a lower of new path lengths among paths leading to nddénrough side
bound toA' . Q.ED. and tree edges. Then for nodes indiide A";, being the length of

a path inG', is a lower bound od'.

Lemma 3

If p contains several edges frd#? T, then the path length
of p will be affected by the weight changes on all these edges, for
example, the fan-out node efin Fig. 4. To facilitate a systemat-
ical calculation of new path lengtl#§;, a breadth-first ordering of
edges inE® T is established first. That is, if there is a directed
path inT from edgee; to edges,, then edges; is placed before
edgeay. G, and the ordering are constructed in Step 1 of Algorithm
DriveNegative

To calculate "}, we take edges fronk® T according to
the sort order, and make a breadth-first traversal of their descendent
nodes alongl. For each node encountered, its fan-in edges are
examined. The path lengths resulting from side and tree edges are
calculated, and\"; is set to the maximum of these lengths in Step
2 of Algorithm DriveNegative

Figure 4. The edges modified are labelled with the weight changes.
shown by edges in solid lines, whi is covered by edges in heavy solid Another reason for dropping cross edges during the derivation
lines. e is not onT, and will not affect the timing. of {A"} is that these cross edges may form loops with tree edges,
Thus we need only to concentrate our efforts in finding th&e€ Fig. 5(b), and the breadth-first traversal method will break down
new longest path leading to nodes@s. In the following dis- ©n these loops. Now, after obtaini#g;, we need to check these
cussion, we shall uge to represent the old longest path frafto ~ Cross edgesV,, V) to see whether the corresponding constraint,
V, in G. For a nodeV, O Co, A =L(p) is no longer the path length A"i + Al < A", are violated, and collect those edges with violated
of p in G, becaus@ must encounter edges frdgr. For example, Constraints into a sé®. If E® is empty, then 4"} is indeed the
in Fig. 4, the path lengths to nodesGn(e) — Co(e) are reduced longest path length set . If E¥ is not empty, then define a new
by 5, while the path lengths to nodesGi(e) are reduced by 5+3. 9raphG” as follows:

A =d —« foredges(V, V) O eV
=Y Ay for edges(V, Vi) DEY
O;Q\D W/ Then clearly constraints on all edges @f are satisfied, and
A P {A"} is the longest path length set @'. The derivation oEY is
O;’O W done in Steps 3-4 of AlgorithidriveNegative
Since \"i; <N, EV is a set of positive driving edges and
@ ® Algorithm DrivePositive may be used to complete the derivation
Figure 5. Dotted, solid, and dashed lines represent respectively side, tle, {A'}, the longest path length set iG'. Note that this
and cross edges. (a)Fan-in edges of ndde(b)Loops formed from cross DrivePositivewill only changeA for nodes insides,.
and tree edges. Algorithm DriveNegativéE®, EV)
To calculate the new longest path length to a nddé Co, 1. For each nod¥, in {V,|(V, V) JE® T}, do

we observe that the last edge on such a path must be a fan-in edge 5 create a queu® ={V}}, and markV, as cone-member
of V.. The fan-in edges o¥ fall into the following three types as of Cp.

illustrated in Fig. 5(a): b. While Q is not empty, do
1. Side edge$V\IC,): The fan-in nodes of these edges are out- 1) Pop the top nod¥ out of Q.
side the coné&. 2) For each edgex = (M, V) inT, do

www.manaraa.com

a) If (M,V)OE® T, placee, after g; in the reported as timing violations. In such cases, in order to find
sort order. meaningful arrival times and slacks, we need to modify the graph

b) Else if Vi is not marked as cone-member, doG' to remove these loop violations. This may be accomplished by
so and add/ to the bottom oR. either deleting an edge on the loop, or decreasing the weight of one

2. FO|¥ (\a/a_ch edggV, \k/j)dm EC 'Tddo’h edge such that the loop gain becomes non-positive. For example, a
i 1s not marked as visited, then latch on the loop can be set in the test mode with the corresponding
a. Create a queu@ ={V}. edge for the internal delay removed. The edges deleted or the edges

b. While Q is not empty, do with weights reduced then contribute B, the set of edges with

1) Pop the top nod¥ out of Q, and mark it as visited. negative change in the modified graph. We need to make another
2) Find the dominance predecesshr Vi, and set round of iteration to find the timing for the modified graph. This

A" 10 Ao + Ny process may be continued until all positive loops are broken.
VP RN AL N P A, Agoritm 1LP2(E", E)
4) If A" = A, then continue. 1. DriveNegativ€E®), EV).
5) SetAtoA".]) 2. SetEO=NULL, and mergeE® andE" into E® EW.
Y maned s vsied, sy 600 S DivePosiive(En | E0)
3. SetE® = NULL. 4. For each loop found im, break an edge, and collect the edge

into a new seg®.

4. For each nod¥, 0 Cp, do Until E9 is empty.

For each fan-out edge, = (V,, V), do
If VO G, t £V, andA — A <N, then adde; to EV.

It can be shown that the computation complexity of Algorithm 4. Results and Discussion
DriveNegativeis O(/Cy|). We shall illustrate the algorithm with We have implemented these algorithms into CYCLOPSS [5],
the example in Fig. 3. Let us reverse the changes: the weight &4 run them through ISCAS'89 benchmark circuits and one mod-
edge (Vs, Vg) is decreased from 6 to 1, and the weight on edggately large industrial chip example. The chip example contains
(Ve, V1) is decreased from 3 to 2. These are two edgé&)inThe 50,000 gates, and has a cycle time 7.0 ns. For the ISCAS'89
edges in solid lines show the longest path Tress it fans out from circuits, we adopted the transformed version [6] in which a com-
EO. ClearlyE® T =E®. During Step 1 of the algorithm, the plementary two-phase clocking scheme is employed to control
cone members o€, are derived as those nodes circled by solifbye|-sensitive latches. For the cycle time, we use = 4.2
lines, and the sorting o is done with edgéVs, V) followed by where ;, is the minimum cycle time for the circuit. Our exper-
edge(Ve, Viz). During Step 2 of the algorithm, we traverse througliments start with a full timing analysis using both the latch-graph(
nodes in coneC,, and use side edges(dotted lines) and treg) pased algorithm, and the full-graf@(longest path algorithm.
edges(solid lines) to update node labels. The labeld;0%, Vio, Each analysis consists of two runs, a forward run through the timing
Vi, Vis Vie, @andVyo are changed back respectively to 4, 6, 13, 9, &onstraint graphl(or G) to derive the arrival time4, and a back-
14, and 15. During Step 3-4 of the algorithm, cross edges(dashggrd run through the graph to derive teguired arrival time R.
lines) are checked, and no driving edge is foundESc= NULL, The slack is calculated &— A. The characteristic values and CPU
and we have derived the solution. times on a 40 MIP machine for seven ISCAS'89 circuits and the

chip example are listed in Table 1.

3.3. The general case L) L
9 Each circuit is then subject to about 60 consecutive incre-

This is the case withE® # NULL, andE® # NULL. For this mental changes, among which, half contain negative change in edge

general case, Lemma 3 is revised in the following form: weights, and the other half contain positive change in edge weights.
Each incremental change involves the weight modification of all the
Lemma 4 fan-out edges from a randomly selected set of nodes. (The size, K,
Let Cy be the dominance fan-out cone fr&m T. Then we have of this node set ranges from 1, 10, 100, 1,000, 10,000, to 100,000
A < A, for nodesV, 1IC,. nodes.) If the node picked for the incremental change is the source

pin of a net, this corresponds to a change of the source-to-sink delay

Proof: For those nodeg outside theCy of E©, the longest of the net. If the node picked is the input pin of a gate, this corre-

pathp leading to node/ in G does not encounter any edge froms onds to a change of internal gate delay of the pin. In both cases
EO®. HenceA, being the path length @f in G, can not be greater P d J Y pin. '

than th th lenath of in G di | bound fo the weight change is selected with a random number generator
an the neéw path lengtnh gfin &, and 1S a lower boun " which has a mean value 0 and a variance 0.2 . After each change,
the longest path length i@'. Q.E.D.

both ILP1 andILP2 are used to incrementally update arrival times

However, for those nodeé insideC,, A may not be a lower and slacks. Fig. 6 shows the plot of the CPU times of the two al-
bound forA';. Algorithm DriveNegativemay be used to generate gorithms versuK using the logarithmic scales in both axes for the
lower bounds for these nodes, and a set of driving e@fesThen circuit, s35932. In this plot, points marked with '.' and 'o' are re-
merge edges fronE™ with those fromE®, and use Algorithm spectively the CPU times ¢EP1 for positive and negative weight
DrivePositiveto derive f'}. If no loop is found inT, then we changes, while points marked with '+' and 'x' are respectively the
reach our final solutiod\’;. On the other hand, if loops are foundCPU times ofLP2 for positive and negative weight changes. More
in T, then they must all be loops with positive gains which will bexperimental data for the CPU running times of Algorithu1 and

www.manaraa.com

ILP2 are respectively presented in Table 2 and Table 3. Each erity T. G. Szymanski, and N. Shenoy, "Verifying clock schedules,"
in these tables shows the average CPU times of incremental timing

runs for a sample of 10 different circuit modifications.

T T2
count sec sec
86 0.02 0.00
4962 6.3 1.21
17662 8.4 3.24
32840 23.6 7.64

circuit gate latch cycle cycle node
name count count s count
s27 26 6 8 96 78
s1423 1462 148 80 96.0 3982
s5378 5916 358 32.7 39.2 14866
9234 11650 456 76 91.2 28130
s1320717240 1338 92 110.4 41212 47578 29.4 12.87
$3593235586 3456 54 64.8 96290 120628 41.4 24.04
$3858441410 2904 70 84.0 110406137388 85.4 34.16
chip 5023613131 - 7.0 249267318202721.574.96

edge

Table 1: Characteristic values, and CPU times for full timing analysié.

ColumnT1 is from a latch-graph based algorithm. Colufithis from a
full-graph longest path algorithm.

7.
Algorithm ILP1 runs only moderately faster than the full tim-
ing algorithm with a speed-up ranging from a few percent to a factor

of 5, See Table 2. Therefor,P1, based on the concept of the
simple fan-out cone, is not a very powerful algorithm. On the otht
hands, AlgorithmlLP2 runs significantly faster thahP1. For both
circuit s35932 and the chip example, the ratios of CPU times for
full timing analysis T;) to that ofILP2 are about 10,000 times for
K=1, 1,000 times for K=10, 100 times for K=100, 10 times fol
K=1,000, and a few times for K=10,000. From Table 3, we notice
that for small incremental changes involvingsK O nodes, the CPU
times ofILP2, being in the order of hundredth of seconds, seem le
sensitive to the sizes of the circuits. This corresponds to a speed
of more than three orders of magnitude relative to the full timin
analysis algorithm for large circuits. Even for incremental changt
involving as large as K=100 to 1,000 nodes, the speed-up relat
to the full timing analysis algorithm is still as high as 10 to 10C
Therefore, AlgorithmlLP2 can be used effectively under the inter-
active environment, in which designers need to make frequent ¢
sign changes and quickly find the timing change.
speed of AlgorithmlLP2 also makes it an ideal timing tool for

3.

log CPU (sec)

proc. ICCAD, pp. 124-131, Nov. 1992

R. S. Tsay and Ichiang Lin, "A system timing verifier for
multiple-phase level-sensitive clock design,” Research Report
RC 17272, IBM Yorktown, 1991.

T. M. Burks, K. A. Sakallash, T. N. Mudge, "ldentification
of critical paths in circuits with level-sensitive latches," Proc.
ICCAD, pp. 137-141, Nov. 1992.

J. F. Lee, D. T. Tang and C. K. Wong, "A timing analysis al-
gorithm for circuits with level-sensitive latches," to be pub-
lished in Proc. ICCAD, Nov. 1994.

T. G. Szymanski, "Computing optimal clock schedules," Proc.
29 th Design Automation conference, pp. 399-404, 1992.

E. L. Lawler, "Combinational Optimization: Networks, and
Matroids," Holt, Rinehart and Winston 1976.

, 535932
10

® 8]
108 8 ° ° g 1
¥ %
kS
.
.
o| + 4

[
Sy
x

10°F

+ X+

+ 4+ XX X

10"
10

L
2

o

.
10°
log K (size of changes)

i
5L

10 10

The drama‘ﬁgure 6. CPU times of incremental algorithms for s35932.

coupling to a logic synthesis program, since, with such a fast in- circuit K=1 K=10 K=10" k=10’ K=10' K=10° T2
cremental timer, the synthesis program can afford to evaluate a tre- n:;;e 055382 Osggo sec sec sec sec 05‘3%
r_nendqus_ngmber of cir_cuit modifications before converging to the s1423 0112 0195 0O 508 0 ;05 ~ ~ 191
final circuit implementation. 5378 0891 1160 1493 1559 1789 - 3.24
We would like to point out that our algorithms may also be s9234 1875 5333 6.608 6.903 7.526 - 7.64
used to solve the incremental shortest path problem. This can bes13207 3.821 7.412 10.067 11.582 12.005 - 12.87
achieved by making the following transformations in graphand §35932 11.418 12.217 19.562 19.954 19.860 11.52 24.04
G: Aj— =Ny Ny =Ny A—-A, and A, - —A,. The 538584 22.976 26.251 29.098 29.093 29.683 24.48 34.16
chip 12.759 21.547 23.072 27.159 34.803 48.30 74.96

shortest path problem corresponds to the early-mode timing problem

under the conservative constraints [1,2]

Acknowledgment

We would like to thank K. Belkhale of IBM Fishkill for
helpful discussions and suggestions.

References

K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, "Check
Tc and min Tc: Timing verification and optimal clocking of
synchronous digital circuits," Proc. ICCAD, pp. 552-555, Nov
1990.

1.

Table 2: Average CPU times for running AlgorithbP1.

circuit K=1 K=10 K=10? K=10° K=10* K=10° T2

name sec secC sec sec sec sec sec
s27 0.001 0.000 - - - - 0.00
s1423 0.001 0.002 0.073 0.279 - - 1.21
s5378 0.002 0.022 0.174 1.028 2.205 - 3.24
s9234 0.005 0.094 0.540 3.219 6.829 - 7.64
s$132070.008 0.031 0.277 2.568 6.872 - 12.87
$359320.003 0.066 0.330 3.283 11.14 26.41 24.04
s$385840.003 0.020 0.388 2.201 10.97 28.45 34.16
chip 0.001 0.028 0.308 2.798 14.61 42.88 74.96

Table 3: Average CPU times for running AlgoritibhP2.

www.manaraa.com

	DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

